ДУДИНА ЛЮБОВЬ ГЕННАДЬЕВНА

ИММУНОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА РЕЦЕПЦИИ БАКТЕРИЯМИ YERSINIA PSEUDOTUBERCULOSIS И YERSINIA PESTIS СПЕЦИФИЧЕСКИХ БАКТЕРИОФАГОВ

03.02.03 Микробиология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена на кафедре биотехнологии Института биологии и биотехнологии Федерального государственного бюджетного образовательного учреждения высшего образования «Вятский государственный университет», Киров.

Научный руководитель:

доктор медицинских наук, профессор

Бывалов Андрей Анатольевич

Официальные оппоненты:

доктор медицинских наук, старший научный сотрудник, главный эксперт Управления экспертизы противобактериальных медицинских иммунобиологических препаратов Федерального государственного бюджетного учреждения «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации

Саяпина Лидия Васильевна

кандидат биологических наук, старший научный сотрудник лаборатории иммунорегуляции «Института экологии и генетики микроорганизмов Уральского отделения Российской академии наук» — филиала Федерального государственного бюджетного учреждения науки Пермского федерального исследовательского центра Уральского отделения Российской академии наук

Масленникова Ирина Леонидовна

Ведущая организация:

ФКУЗ Иркутский научно-исследовательский противочумный институт Роспотребнадзора (664047, г. Иркутск, ул. Трилиссера, д. 78)

Защита состоится «12» апреля 2019 г. в «10:00» на заседании диссертационного совета Д 999.219.02 на базе Пермского федерального исследовательского центра Уральского отделения Российской академии наук и Пермского государственного медицинского университета имени академика Е.А. Вагнера по адресу: 614081, г. Пермь, ул. Голева, д. 13. Факс: +7(342)2809211.

Автореферат диссертации размещен на официальном сайте Высшей аттестационной комиссии Министерства науки и высшего образования РФ (http://vak.ed.gov.ru) и на сайте «ИЭГМ УрО РАН» (http://www.iegm.ru).

С диссертацией можно ознакомиться в библиотеке «ИЭГМ УрО РАН» и на сайте института (http://www.iegm.ru).

Автореферат диссертации разослан « » 201
--

Ученый секретарь диссертационного совета, доктор биологических наук

Максимова Юлия Геннадьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы и степень разработанности темы исследования

Бактерии рода Yersinia включают три патогенных для человека вида — Yersinia enterocolitica, Yersinia pseudotuberculosis и Yersinia pestis. Возбудители первых двух видов являются энтеропатогенами и вызывают соответственно кишечный иерсиниоз и псевдотуберкулёз — заболевания, достаточно широко распространенные на территории России. Y. pestis является этиологическим агентом чумы — тяжелого системного заболевания, послужившего причиной трёх пандемий за историю человечества (Stenseth et al., 2008). Даже в последние десятилетия заболевание чумой регистрируется с частотой приблизительно до 2500 случаев в год (Feodorova, Corbel, 2009).

В последнее время в медицине всё более актуальной становится проблема возникновения антибиотикорезистентных штаммов патогенных микроорганизмов. Так, имеются данные об обнаружении полиантибиотикорезистентных штаммов Y. pestis (Galimand et al., 1997; Guiyoule et al., 2001; Riedel, 2005; Galimand et al., 2006). В отношении возбудителя ситуация осложняется существованием ЧУМЫ целенаправленного конструирования устойчивого к действию антибиотиков Y. pestis, который может быть использован как средство биотерроризма (Inglesby et al., 2000). Имеются также литературные данные о антибиотикорезистентных штаммов pseudotuberculosis *Y*. (Kanazawa, Ikemura, 1979; Kimura et al., 1976), а отсутствие своевременной и адекватной терапии псевдотуберкулёза зачастую приводит к переходу заболевания в хроническую форму (Сомов $u \partial p$., 2001).

Поиск альтернативных средств лечения инфекционных заболеваний вызвал новый виток интереса к фаготерапии (Cisek et al., 2017). Однако при использовании бактериофагов в качестве лечебного средства важно хорошо понимать все фазы их жизненного цикла. В частности, процесс адсорбции бактериофага на поверхность бактериальной клетки является одной из критических стадий их взаимодействия (Adams, 1959). Это отчасти связано с тем, что одним из требований, предъявляемых к бактериофагам, которые можно было бы использовать в терапии инфекционных заболеваний, является то, что мутации, приводящие к инактивации рецепторов, распознаваемых бактериофагами, должны приводить к снижению вирулентности патогена (Filippov et al., 2011). Знание химической природы и локализации рецепторов, распознаваемых бактериофагами, имеет большое значение и при их использовании в диагностических целях.

В настоящее время известен ряд специфических в отношении *Y. pestis* литических бактериофагов, которые потенциально могут быть использованы для лечения чумы (Filippov *et al.*, 2011). Бактериофаг Покровской является одним из достаточно хорошо изученных и применяемых в диагностической практике чумных бактериофагов, однако механизм его адсорбции

иммунохимическими методами практически не исследовался. Относительно бактериофагов, специфичных в отношении псевдотуберкулёзного микроба, в литературных источниках данных представлено значительно меньше. Таким образом, комплексное изучение процессов адсорбции на микробных клетках иерсиниозных бактериофагов, в том числе иммунохимическими методами, является актуальным направлением исследования.

Цель работы – иммунохимически охарактеризовать адгезивность бактерий *Y. pestis* и *Y. pseudotuberculosis* в отношении специфических бактериофагов.

Задачи исследования:

- 1. Установить химическую природу и локализацию на бактериальной клетке эпитопов, распознаваемых набором моноклональных антител (МКАт1-9) к поверхностным антигенам иерсиний.
- 2. Изучить химическую природу рецепторов иерсиний, комплементарных бактериофагам псевдотуберкулёзному диагностическому и чумному Покровской.
- 3. Иммунохимически охарактеризовать процесс адсорбции на клетках иерсиний бактериофагов псевдотуберкулёзного диагностического и чумного Покровской методом конкурентного ингибирования с помощью панели моноклональных антител.
- 4. Охарактеризовать морфологические и культуральные свойства бактериофага псевдотуберкулёзного диагностического.
- 5. Оценить способность бактерий *Y. pseudotuberculosis* и *Y. pestis* продуцировать внеклеточные везикулы, а также возможность влияния иерсиниозных бактериофагов на везикулообразование.

Научная новизна

Определена химическая природа эпитопов, распознаваемых антителами к поверхностным моноклональными антигенам иерсиний (МКАт1-9). Показано, что МКАт5-9 выявляют неидентичные эпитопы антигенов иерсиний белковой природы, не являющихся поринами Отр F и Omp C. МКАт1-4 выявляют неидентичные видоспецифические детерминанты, расположенные О-боковых липополисахарида на цепях $(\Pi\Pi C)$ Y. pseudotuberculosis.

Установлен факт образования бактериями *Y. pseudotuberculosis* 1b и *Y. pestis* EV внеклеточных везикул. Показано, что инкубация указанных микробов с, соответственно, бактериофагами псевдотуберкулёзным диагностическим и чумным Покровской приводит к повышению уровня везикулообразования и изменению морфологии бактериальных клеток.

Показано, что рецептор псевдотуберкулёзного диагностического бактериофага ассоциирован с коровой областью липополисахарида *Y. pseudotuberculosis*.

Определено, что моноклональные антитела, взаимодействующие с эпитопами белковой природы, способны частично блокировать рецепцию двух использованных в работе бактериофагов. МКАт5-8 ингибировали

адгезию к соответствующим микробным клеткам псевдотуберкулёзного диагностического бактериофага, а МКАт5, 7 и 8 — бактериофага чумного Покровской.

Теоретическая и практическая значимость работы

Разработан методический подход, основанный на использовании инактивированных формальдегидом бактериальных клеток в опытах по количественной оценке адсорбции частиц иерсиниозных бактериофагов. Показано, что за счёт увеличения времени инкубирования можно повысить количество адсорбировавшихся частиц бактериофага без риска получения недостоверных результатов, связанных с ранним выходом дочерних фаговых частиц. Данный методический подход особенно актуален при работе с высокопатогенными бактериями, а также бактериофагами, характеризующимися относительно высокой и низкой скоростями адсорбции.

В целях изучения процессов взаимодействия в системе «бактерия рода *Yersinia* — специфический бактериофаг» применен новый методический подход, основанный на конкурентном ингибировании процесса адсорбции бактериофагов с помощью моноклональных антител.

Охарактеризованная панель моноклональных антител может быть использована для разработки более совершенных средств иммунохимического выявления возбудителя псевдотуберкулёза.

Основные положения, выносимые на защиту:

- 1. Эпитопы, распознаваемые моноклональными антителами МКАт1-4, расположены на О-боковых цепях липополисахарида *Y. pseudotuberculosis*. МКАт5-9 взаимодействуют с неидентичными белковыми детерминантами на внешней мембране *Y. pseudotuberculosis*.
- 2. МКАт5-8 ингибируют адсорбцию к бактериям *Y. pseudotuberculosis* частиц псевдотуберкулёзного диагностического бактериофага, а МКАт5, 7 и 8 адсорбцию к клеткам *Y. pestis* бактериофага чумного Покровской.
- 3. Бактерии *Y. pseudotuberculosis* 1b и *Y. pestis* EV способны к везикулообразованию, степень которого повышается в присутствии бактериофагов псевдотуберкулёзного диагностического и чумного Покровской соответственно.

Степень достоверности результатов исследования и апробация работы

Достоверность полученных в работе результатов подтверждается использованием современных методов исследования и высокотехнологичного оборудования, прошедшего поверку. Выводы сделаны на основе анализа достаточно представительного массива экспериментальных данных. Результаты исследований обработаны с помощью общепринятых методов статистического анализа.

Материалы работы представлены на II Всероссийской (XVII) молодежной научной конференции «Молодежь и наука на севере» (Сыктывкар, 2014), XIII Всероссийской молодежной научной конференции Института физиологии Коми научного центра Уральского отделения РАН

«Физиология человека и животных: от эксперимента к клинической практике» 2014), XXVI Зимней молодежной научной (Сыктывкар, «Перспективные биологии направления физико-химической И биотехнологии», Всероссийской конференции «Фундаментальная II Всероссийской гликобиология» (Саратов, 2014), IV конференции «Фундаментальная гликобиология» (Киров, 2018), а также на Всероссийских ежегодных научно-практических конференциях «Общество, наука, инновации» в 2012 - 2018 годах (Киров).

Публикации результатов исследования

По теме диссертации опубликованы 22 работы, из них семь из перечня ведущих рецензируемых научных журналов, рекомендованных ВАК России.

Связь работы с научными программами и личный вклад автора

Работа выполнена на базе ФГБОУ ВО «Вятского государственного университета» лаборатории физиологии микроорганизмов Института физиологии Коми НЦ УрО РАН в рамках плановых научноисследовательских тем: «Механизмы взаимодействия клеток млекопитающих и бактерий Yersinia pseudotuberculosis», №ГР №01201350808 (2013-2016 гг.) и везикулообразования иерсиний», №ΓΡ№ «Механизмы AAAA-A17-117012310155-3 (2017-2020 гг.), а также Программы фундаментальных исследований Президиума РАН «Фундаментальные науки – медицине», 12-Π-4-1051 Проект: «Разработка тест-системы псевдотуберкулёзной моноклональной», 2012-2014 гг.

Автор участвовала в планировании и выполнении экспериментов, статистической обработке результатов исследования, анализе и обобщении экспериментальных и литературных данных.

Результаты просвечивающей электронной микроскопии (ПЭМ) получены совместно с к.б.н. А.В. Чернядьевым в НОЦ Нанотехнологии ФГБОУ ВО «Вятского государственного университета».

Препараты поринов Omp F, Omp C и рекомбинантного порина Omp F, а также поликлональная сыворотка к рекомбинантному порину Omp F любезно предоставлены д.х.н. О.Д. Новиковой из ФГБУН Тихоокеанского института биоорганической химии им. Г.Б. Елякова ДВО РАН.

Структура и объём диссертации

Диссертация изложена на 146 страницах текста, состоит из перечня сокращений, введения, трёх глав, заключения и выводов. Диссертация проиллюстрирована 11 таблицами и 21 рисунком. Библиографический список включает 254 источника, в том числе 48 отечественных и 206 зарубежных.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ ОБЗОР ЛИТЕРАТУРЫ

Представлен обзор отечественных и зарубежных исследований, посвященных характеристике бактерий *Y. pseudotuberculosis* и *Y. pestis*, в том числе компонентов их наружной мембраны, везикул, а также бактериофагов, специфичных в отношении названных бактерий.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовали следующие штаммы микроорганизмов: Y. pseudotuberculosis серотипа 1b, Y. pestis вакцинный штамм EV, штамм M17 Escherichia coli, штамм N_{2} 6538-p Staphylococcus aureus.

В работе были использованы следующие препараты бактериофагов: коммерческий бактериофаг псевдотуберкулёзный диагностический, коммерческий бактериофаг чумной Покровской.

Использованные антигенные препараты: препараты ЛПС *Y. pseudotuberculosis* и *Y. pestis*, выделенные методом О. Westphal с помощью водно-фенольной экстракции (Westphal, Jann, 1965); коммерческий препарат ЛПС, выделенный из клеток *E. coli* 055:B5 («Difco», США); лабораторные серии препарата Б-антигена; порины Отр F и Отр С *Y. pseudotuberculosis*.

Использованные в работе антитела и антивидовые конъюгаты:

- 1) В музее лаборатории физиологии микроорганизмов ФГБУН Коми НЦ УрО РАН на базе ФГБОУ ВО «Вятского государственного университета» хранятся гибридомы, продуцирующие моноклональные антитела девяти линий. Гибридомы, продуцирующие МКАт1-4, были получены путем иммунизации мышей линии BALB/c клетками Y. pseudotuberculosis c бустерным введением смеси препаратов ЛПС, которые были выделены из культур, выращенных при температурах 10 гибридом-продуцентов °C. получения MKA_T5-9 Для мышей иммунизировали Б-антигеном, выделенным из клеток Y. pseudotuberculosis, которые выращивали при температуре 37 °C. Скрининг гибридом первой группы проводили по ЛПС Y. pseudotuberculosis, второй группы – по Бантигену, но не ЛПС. Культуры указанных гибридом внутрибрюшинным способом вводили мышам линии BALB/с в дозе 2-5 млн живых клеток на одно животное, через 9-12 суток отсасывали и центрифугировали содержимое брюшной полости. В работе использовали соответствующие препараты надосадочной жидкости, обозначенные как МКАт1-9.
- 2) Поликлональная лошадиная агглютинирующая сыворотка (ПЧС) к цельным клеткам *Y. pestis* (ФКУЗ РосНИПЧИ «Микроб»);
- 3) конъюгат пероксидазы с козьими антителами к иммуноглобулинам G, M, A мыши («Sigma», США);
- 4) конъюгат пероксидазы с (Fab)₂-фрагментами козьих антител против иммуноглобулинов G, A, M мыши («Sigma», США).

Общую концентрацию микробных клеток определяли по стандартному образцу мутности ФГУН ГИСК им. Л.А. Тарасевича, а также по оптической плотности (ОП) при длине волны 600 нм на спектрофотометре SmartSpecPlus (BioRad, США). Концентрацию жизнеспособных клеток определяли высевом на чашки Петри с БТН-агаром («Биотехновация», Россия) методом серийных разведений.

Определение титра бактериофага проводили методом агаровых слоев Грациа (Лабинская, 1978).

Выделение и очистку препаратов иерсиниозных бактериофагов с помощью $\Pi \Im \Gamma$ -8000 вели согласно известной методике (Sambrook, Russell, 2001).

Морфологические особенности и число везикулообразующих бактерий определяли методом просвечивающей электронной микроскопии (ПЭМ) (Бывалов $u \partial p$., 2018).

Оценку адсорбционной активности бактерий иерсиний вели согласно (Kiljunen *et al.*, 2011). Для исследования использовали культуры *Y. pseudotuberculosis* и *Y. pestis*, выращенные в течение 18-20 ч при температуре 37 °C и в течение 48 часов при температуре 27 °C соответственно. Инактивацию бактерий проводили путём добавления формальдегида до концентрации 0.3 % и выдерживания в течение 2 часов при комнатной температуре.

Оценку влияния периодатного окисления и влияния протеаз проводили согласно (Kiljunen *et al.*, 2011). Для дальнейшего использования в ИФА окисленные бактериальные клетки отмывались не содержащими окислитель буферами с помощью центрифугирования, препараты ЛПС и Б-антигенов разводились в буферах до требуемой в опыте концентрации. При последующем использовании для электрофоретического разделения окисленные препараты ЛПС диализовались против деионизированной воды.

Обработку антигенных препаратов протеиназой К для исследования методом иммуноблотинга проводили по широко используемой методике (Hitchcock, Brown, 1983).

Оценку конкуренции антител и бактериофагов за сайты адсорбции проводили следующим образом. Инактивированные 0.3 % формальдегидом бактериальные клетки доводили до концентрации 8·10⁹ м.к./ мл с помощью ЗФР, содержащего МКАт. Моноклональные антитела и ПЧС были разведены следующим образом: МКАт 1, 2, 5, 6, 7, 9 и ПЧС – 1:100; МКАт3, 4, 8 – 1:50. Бактериальные клетки выдерживали в растворе антител 1.5 ч при температуре 37 °C, осаждали центрифугированием при 15870 g на центрифуге Centrifuge 5424 («Еррепdorf», Германия) в течение 10 мин и отмывали в жидкой питательной среде. Концентрацию клеток доводили до значения оптической плотности 1.2 при длине волны 600 нм и далее определяли адсорбционную активность клеток согласно (Kiljunen *et al.*, 2011).

Твердофазный иммуноферментный анализ (ИФА) проводили путем сенсибилизации лунок микротитровальных планшетов («Greiner BioOne», Германия) антигенными препаратами, к которым после соответствующих стадий блокировки и отмывки добавлялись МКАт и затем антивидовой конъюгат пероксидазы. В качестве субстрата использовали раствор ортофенилендиамина. Результаты реакции выражали в единицах оптической плотности при $\lambda = 492$ нм (ОП₄₉₂).

Электрофоретическому разделению в полиакриламидном геле с додецилсульфатом натрия (Laemmly, 1979) подвергали очищенные препараты ЛПС (нагрузка на дорожку – 12.5 мкг), поринов (нагрузка на дорожку –

 $10 \, \mathrm{MKr}$), Б-антигена (нагрузка на дорожку $-30 \, \mathrm{MKr}$), а также микробные клетки иерсиний (нагрузка на дорожку клеточного лизата соответствовала $200 \cdot 10^6 \, \mathrm{kn}$.) после прогревания в литическом буфере на водяной бане при температуре $100 \, ^{\circ}\mathrm{C}$ в течение $15 \, \mathrm{muh}$ для поринов и $5 \, \mathrm{muh}$ для остальных препаратов. Окрашивание геля проводили Кумасси R-250 либо нитратом серебра (Tsai, Frasch, 1982).

Перенос электрофоретически разделенных антигенных препаратов на нитроцеллюлозную бумагу («Millipore», США) проводили методом полусухого переноса (в Trans-Blot SD semi-dry transfer cell, «Bio-Rad», США). Для гибридизации использовали моноклональные антитела в рабочем разведении: для МКАт1 – 1:2000 (в блотинге, результаты которого отражены на рисунке 1-1:500), МКАт2, 5, 7, 9-1:1000, МКАт3, 4, 8-1:200, МКАт6 – 1:500. Субстратом служил раствор 3,3'-диаминобензидин хлорида.

Статистическую обработку результатов проводили стандартными методами (Лакин, 1980).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

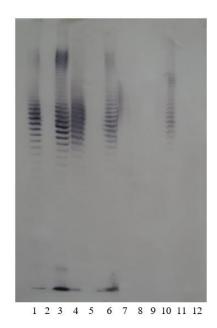
1 Иммунохимическая природа антигенных эпитопов иерсиний, распознаваемых моноклональными антителами МКАт1-9

Для использования панели моноклональных антител в целях иммунохимического исследования процесса адсорбции на поверхность бактериальных клеток *Y. pseudotuberculosis* и *Y. pestis* частиц специфических бактериофагов необходимо было установить природу эпитопов, с которыми взаимодействуют МКАт1-9.

На первом этапе была определена активность моноклональных антител разнокачественных антигенных препаратов Enterobacteriaceae и, в частности, рода Yersinia (таблица 1). Согласно данным таблицы 1, моноклональные антитела можно условно разделить на две резко отличающиеся группы: МКАт1-4 и МКАт5-9. Совокупность данных, характеризующих MKAT1-4, иммунохимическую активность свидетельствует, они гораздо взаимодействовали ЧТО активнее «холодовыми» препаратами клеток и ЛПС Y. pseudotuberculosis, в то время как МКАт5-9 в целом эффективнее выявляли клетки Y. pseudotuberculosis, выращенные при температуре 37 °C, а также препараты Y. pestis и Б-антигена. МКАт1-3 практически не выявляли ЛПС, выделенный из клеток Y. pestis и E. coli, что говорит об их высокой специфичности в отношении псевдотуберкулёзного микроба.

Таблица 1 – Специфическая активность МКАт1-9 в ИФА с антигенами иерсиний

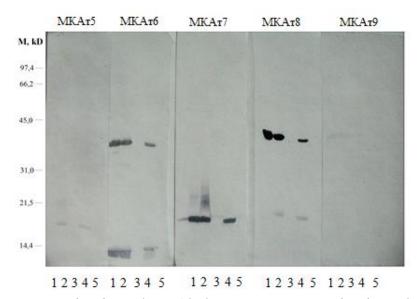
	Значение О Π_{492} (X ± I_{95}) в И Φ А									
Антигенный препарат	МКАт1	МКАт2	МКАт3	МКАт4	МКАт5	МКАт6	МКАт7	МКАт8	МКАт9	
Клетки Y. pseudotuberculosis-10	2.122 ±	1.577 ±	1.520 ±	1.333 ±	0.201 ±	1.126 ±	$0.470 \pm$	$0.632 \pm$	$0.135 \pm$	
(n≥5)	0.498	0.406	0.420	0.649	0.088	0.715	0.225	0.302	0.065	
Клетки Y. pseudotuberculosis-37	$1.357 \pm$	$1.160 \pm$	$1.102 \pm$	$1.130 \pm$	$1.505 \pm$	$1.897 \pm$	$1.820 \pm$	$1.615 \pm$	$1.132 \pm$	
(n≥5)	0.419	0.356	0.383	0.399	0.591	0.504	0.636	0.576	0.442	
Клетки <i>Y. pestis</i> EV-27 (n≥2)	$0.168 \pm$	$0.192 \pm$	$0.179 \pm$	$0.445 \pm$	$0.955 \pm$	$1.223 \pm$	$1.182 \pm$	$1.054 \pm$	$0.596 \pm$	
	0.089	0.074	0.56	0.245	0.368	0.654	0.254	0.412	0.123	
ЛПС Y. pseudotuberculosis-10 (n≥4)	$2.042 \pm$	$2.021 \pm$	$1.382 \pm$	$1.870 \pm$	$0.255 \pm$	$0.552 \pm$	0.210	$0.492 \pm$	$0.175 \pm$	
	0.362	0.315	0.269	0.427	0.135	0.411	± 0.099	0.245	0.173	
ЛПС Y. pseudotuberculosis-37 (n≥4)	$0.886 \pm$	$0.651 \pm$	$0.453 \pm$	$0.548 \pm$	$0.147 \pm$	$0.499 \pm$	$0.265 \pm$	$0.506 \pm$	$0.093 \pm$	
	0.344	0.264	0.090	0.121	0.061	0.236	0.104	0.252	0.026	
ЛПС Y. pestis EV-27 (n≥2)	$0.160 \pm$	$0.193 \pm$	$0.149 \pm$	$0.402 \pm$	$0.171 \pm$	$0.470 \pm$	$0.288 \pm$	$0.641 \pm$	$0.081 \pm$	
	0.045	0.051	0.062	0.127	0.065	0.349	0.222	0.231	0.034	
ЛПС E. coli (n≥2)	$0.110 \pm$	$0.131 \pm$	$0.254 \pm$	$0.280 \pm$	$0.133 \pm$	$0.499 \pm$	$0.320 \pm$	$0.712 \pm$	$0.080 \pm$	
	0.106	0.106	0.125	0.147	0.038	0.214	0.146	0.171	0.083	
Б-антиген-37 (n≥4)	$2.074 \pm$	$2.259 \pm$	$1.681 \pm$	$1.882 \pm$	$2.218 \pm$	$2.001 \pm$	$2.434 \pm$	2.110 ±	1.274	
	0.982	0.801	0.944	0.637	0.865	0.504	0.844	0.741	± 0.362	
Б-антиген-10 (n=1)	2.691	2.548	2.580	2.629	2.290	1.768	2.650	2.106	0.536	


Примечания: 1. МКАт1, 2, 5, 7 и 9 использовали в разведении 1:2000, МКАт3, 4 и 8 – в разведении 1:100, МКАт6 – в разведении 1:500.

^{2.} Числа 10,27,37 в первом столбце таблицы и далее по тексту означают температуру выращивания культуры микробов, из которой получали антигенные препараты.

^{3.} I_{95} – доверительный интервал для p = 0.95.

Исследование химической природы эпитопов, распознаваемых исследуемыми моноклональными антителами, проводили путём заключающихся в обработке использования методических подходов, антигенных препаратов периодатом натрия и протеазами (Kiljunen et al., 2011).


Как можно видеть на рисунке 1, периодатное окисление клеток Y. pseudotuberculosis, выращенных при температуре 10 °C, а также выделенного из них препарата ЛПС полностью инактивировало эпитопы, MKAt1;протеиназа распознаваемые К не оказывала влияния на иммунохимическую активность вышеупомянутых препаратов. Ha иммуноблоте препарата Отр F МКАт1 с невысокой активностью выявляли «лестницу», характерную для О-боковых цепей ЛПС, который присутствует в препарате порина в качестве прочно связанной примеси. Качественно идентичная картина наблюдалась и в блотинге с МКАт2-4. Совокупность посвященных иммунохимической характеристике свидетельствуют о том, что они с высокой специфичностью выявляют Обоковые цепи Y. pseudotuberculosis.

1 — ЛПС Y. pseudotuberculosis-10; 2 — ЛПС Y. pseudotuberculosis-10, обработанный периодатом Na; 3 — ЛПС Y. pseudotuberculosis-10, обработанный протеиназой K; 4 — клетки Y. pseudotuberculosis-10; 5 — эти же клетки, обработанные периодатом Na; 6 — эти же клетки, обработанные протеиназой K; 7 — клетки Y. pseudotuberculosis-27; 8 — клетки Y. pseudotuberculosis-37; 9 — клетки Y. pseudotuberculosis-37; 9 — клетки Y. psetis EV-27; 10 — порин Omp F; 11 — рекомбинантный порин Omp F; 12 — порин Omp C

Рисунок 1 — Иммуноблот препаратов ЛПС Y. pseudotuberculosis-10, клеток Y. pseudotuberculosis и поринов с MKA $\tau 1$ (в разведении 1:500)

Результаты иммуноблотинга препаратов клеток *Y. pseudotuberculosis* и *Y. pestis*, а также Б-антигена с МКАт5-9 представлены на рисунке 2. Как можно видеть на рисунке 2, МКАт5-9 выявляют неидентичные линии, исчезающие при предваряющей электрофорез обработке клеток *Y. pseudotuberculosis* протеиназой К и, соответственно, имеющие белковую природу. В целом, можно заключить, что МКАт5-9 менее специфичны по сравнению с МКАт1-4, они выявляют неидентичные белковые детерминатны, расположенные на поверхности клеток *Y. pseudotuberculosis* и не являющиеся поринами Отр F и Отр C.

1 — клетки *Y. pseudotuberculosis*-10, 2 — клетки *Y. pseudotuberculosis*-37; 3 — клетки *Y. pseudotuberculosis*-37, обработанные протеиназой K; 4 — клетки *Y. pestis* EV-27, 5 — EV-27, EV-27,

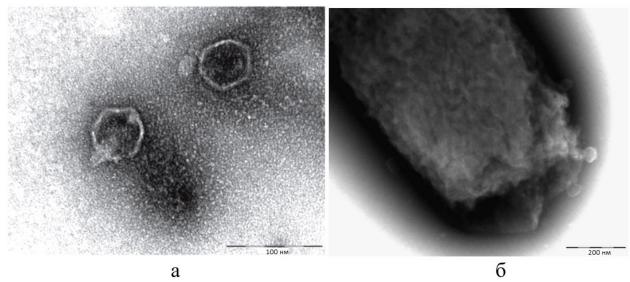
Рисунок 2 — Иммуноблоты антигенов иерсиний с моноклональными антителами МКАт5-9

2 Культурально-морфологические свойства иерсиниозных бактериофагов

Для изучения процессов рецепции клетками исследуемых иерсиний специфических бактериофагов предварительно следовало охарактеризовать их морфологические и культуральные свойства. Результаты определения способности бактериофагов Покровской и псевдотуберкулезного диагностического лизировать восприимчивые бактерии при различных температурах представлены в таблице 2.

Как можно видеть из представленных в таблице 2 данных, бактериофаг псевдотуберкулезный диагностический показал способность лизировать обе рассматриваемые культуры бактерий, в то время как бактериофаг Покровской оказался видоспецифичным в отношении *Y. pestis*. При взаимодействии с *Y. pseudotuberculosis* бактериофаг псевдотуберкулезный диагностический оказался способным к размножению при температурах 27 и 37 °С (в большей

мере), но не при температуре 10 °C. Этот факт дает возможность предположить, что О-боковые цепи ЛПС, синтезируемые бактерией при пониженных температурах, не участвуют в рецепции бактериофага и даже могут препятствовать его адсорбции на поверхность бактериальной клетки.


Таблица 2 – Литическая активность иерсиниозных бактериофагов при

различных температурах культивирования бактерий

различных температурах культивирования бактерии											
Бактериальная											
культура		Y. ps	eude	otub	ercul	V nastis www.vv EV					
Оцениваемый		серотипа 1b					Y. pestis, штамм EV				
показатель											
Температура культивирования		10 °C	27	°C	37 °C		10 °C	27	°C	37 °C	
Время культивирования, сутки		6	1	2	1	2	6	1	2	1	2
Выражен-	чумного										
ность лизиса	Покровской	-	-	-	-	-	++	++	++	+	++
для бактерио-	псевдотубер-										
фага	кулёзного										
	диагностичес-	_	+	+	++	++	_	++	++	+	+
	кого										

Примечание. «-» — отсутствие зоны лизиса; «+», «++» — лизис наблюдается, диаметр зоны лизиса «+» меньше, чем «++».

Как показали результаты просвечивающей электронной микроскопии, частицы обоих фагов состоят из головки (икосаэдрического капсида), имеющей на плоскости гексагональную форму, и короткого отростка длиной до 15 нм. Головка псевдотуберкулезной фаговой частицы несколько вытянута вдоль центральной оси (рисунок 3а). Диаметр головок вдоль центральной оси составляет $(52,3\pm2,2)$ и $(50,3\pm1,8)$ нм, ширина $-(50,2\pm0,9)$ и $(50,2\pm1,3)$ нм, длина отростков – $(13,0\pm1,2)$ и $(10,4\pm1,0)$ нм соответственно для бактериофагов псевдотуберкулезного Покровской. И По принятой классификации (Ackermann, 2007; Ackermann, 2003) оба фага можно отнести к семейству Podoviridae, морфотип С1, к которому относятся большинство чумных литических бактериофагов, в том числе, как было показано ранее, и фаг Покровской (Silva et al., 2016).

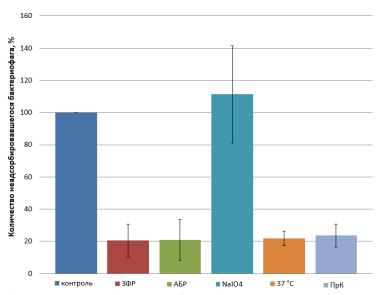
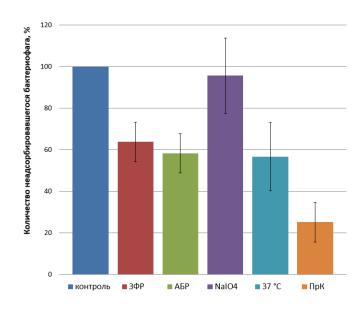

а – частицы бактериофага псевдотуберкулезного диагностического; б – частицы бактериофага Покровской на поверхности клетки *Y. pestis* EV

Рисунок 3 — Просвечивающая электронная микроскопия иерсиниозных бактериофагов

3 Химическая природа рецепторов бактерий Y. pseudotuberculosis и Y. pestis, комплементарных специфическим бактериофагам

При работе с псевдотуберкулёзным диагностическим бактериофагом возникли методические сложности, связанные с использованием живых клеток в качестве тест-культуры. Оказалось, что данный бактериофаг имеет низкую скорость адсорбции на бактериальной клетке, поэтому для получения выраженных значений уровня адсорбции возникла необходимость в более длительной экспозиции суспензии бактерий с бактериофагом. Однако, при инкубации использованием увеличении времени c живых Y. pseudotuberculosis фаговые частицы, сумевшие прикрепиться к поверхности отдельных клеток в начале совместной инкубации, успевали инициировать полный цикл лизиса и произвести новое поколение бактериофага, что приводило к появлению некорректных результатов в опытах по адсорбции. В этой связи было принято решение использовать инактивированные с помощью 0.3 %-ного формальдегида бактериальные клетки. Показано, что данный подход позволяет увеличить количество прикрепившихся фаговых частиц за счет увеличения времени совместного инкубирования с бактериальными Благодаря использованию убитых клетками. повышается воспроизводимость методики и достоверность получаемых результатов.

Для определения химической природы рецепторов бактериофагов Покровской и псевдотуберкулёзного диагностического использовали обработку бактериальных клеток периодатом натрия и протеиназой К (рисунки 4 и 5).



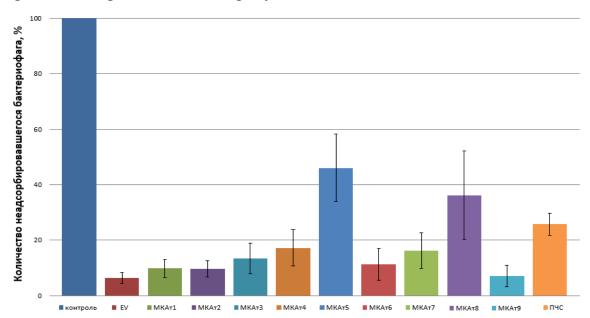
Клетки, инкубированные с бактериофагом: 3ФР, АБР – клетки, выдержанные соответственно в забуференном физиологическом растворе либо ацетатном буферном растворе; NaIO₄, ПрК – клетки, обработанные 100 мМ периодатом натрия и протеиназой К соответственно; 37 °C – клетки, выдержанные в забуференном физиологическом растворе при температуре 37 °C. Контроль – бактериофаг без микробных клеток

Рисунок 4 — Влияние обработки клеток *Y. pestis* EV периодатом натрия и протеиназой К на адсорбцию бактериофага чумного Покровской

Как можно видеть на рисунке 4, интактные клетки Y. pestis адсорбировали на своей поверхности порядка 80 % находящихся в суспензии фаговых частиц. Практически равное этому количество бактериофага Покровской прикреплялось к поверхности бактерий в дополнительных контролях – при использовании ацетатного буфера и при выдерживании суспензии клеток при температуре 37 °C –, которые соответствовали условиям протеиназой периодатного окисления обработки проведения соответственно. Количество прикрепившихся частиц бактериофага Покровской практически не менялось при обработке клеток Y. pestis штамма EV протеиназой K, в то время как обработка бактерий периодатом натрия приводила к тому, что клетки полностью теряли способность адсорбировать на своей поверхности. Данные результаты предположить, что бактериофаг Покровской взаимодействует с рецепторами полисахаридной природы, расположенными вероятнее всего на коровой части молекулы липополисахарида. Полученные результаты согласуются с данными А.А. Филиппова и соавторов (Filippov et al., 2011), показавшими, что рецептор бактериофага Покровской ассоциирован с областью Hep II/ Hep III на внутренней части кора ЛПС.

Результаты аналогичных исследований с использованием клеток *Y. pseudotuberculosis* 1b и бактериофага псевдотуберкулёзного диагностического представлены на рисунке 5.

Клетки, инкубированные с бактериофагом: 3ФР, АБР – клетки, выдержанные соответственно в забуференном физиологическом растворе, либо ацетатном буферном растворе; NaIO₄, ПрК – клетки, обработанные 100 мМ периодатом натрия и протеиназой К соответственно; 37 °C – клетки, выдержанные в забуференном физиологическом растворе при температуре 37 °C. Контроль – бактериофаг без микробных клеток


Рисунок 5 — Влияние обработки клеток *Y. pseudotuberculosis* периодатом натрия и протеиназой К на адсорбцию бактериофага псевдотуберкулёзного диагностического

Как можно видеть на рисунке 5, интактные клетки Y. pseudotuberculosis адсорбировали на своей поверхности порядка 40 % псевдотуберкулёзного диагностического бактериофага. Приблизительно такие же значения уровня адсорбции наблюдались для контрольных препаратов, обозначенных «АБР» и «37 °С». После обработки клеток Y. pseudotuberculosis периодатом натрия они теряли способность к адсорбции псевдотуберкулёзного диагностического бактериофага, и несвязанными оставалось 95.5 % фаговых Примечательно, что разрушение белковых компонентов наружной мембраны протеиназой К приводило к существенному увеличению количества частиц псевдотуберкулёзного прикрепившихся к микробным клеткам бактериофага, что можно объяснить повышением доступности рецепторов вследствие гидролитического расщепления соседних белковых структур. Полученные данные позволяют сделать TOM, вывод о рецептор псевдотуберкулёзного бактериофага диагностического имеет полисахаридную природу. Приняв во внимание данные таблицы 2, а также на бактериофагов, основании свойств подобных исследуемому, рецептор псевдотуберкулёзного предположить, что диагностического бактериофага расположен на коровой части молекулы ЛПС.

4 Адгезивность на клетках иерсиний специфических бактериофагов, оцененная методом конкурентного ингибирования

Представлялось важным оценить возможную конкуренцию специфических бактериофагов с разнокачественными моноклональными антителами за сайты адсорбции на поверхности бактериальной клетки. Это при использовании бактериофагов что терапевтического средства их взаимодействие с бактериальными клетками в организме человека либо животного может происходить в присутствии антител к возбудителю инфекции. Кроме того, при отработке эффективных и экспрессных схем лечения (и профилактики) ряда бактериальных инфекций следует определить принципиальную возможность сочетанного применения средств фаго- и серотерапии. Для оценки конкуренции двух иерсиниозных бактериофагов и МКАт1-9 за сайты адсорбции использовали методический подход, основанный на принципе конкурентного ингибирования.

Результаты, полученные для пары «клетка *Y. pestis* EV - бактериофаг Покровской», представлены на рисунке 6.

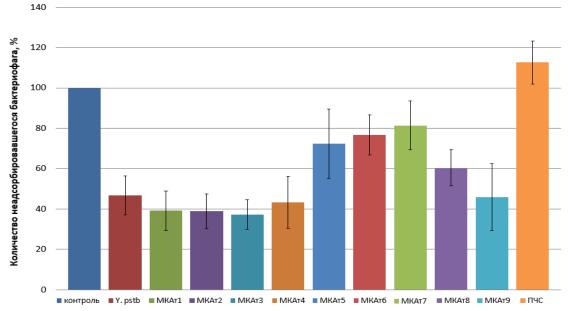

Клетки, инкубированные с бактериофагом: EV — без предварительной обработки антителами, МКАт1-МКАт9 — обработанные соответствующими моноклональными антителами, ПЧС - противочумной сывороткой. Контроль — бактериофаг без клеток

Рисунок 6 – Конкуренция МКАт1-9 и бактериофага Покровской за сайты связывания на поверхности клеток *Y. pestis*, штамм EV

Данные, представленные на рисунке 6, свидетельствуют о том, что интактные клетки *Y. pestis* штамма EV адсорбировали из раствора на своей поверхности порядка 90 % фаговых частиц. МКАт1-4, взаимодействующие, как было показано ранее, с О-боковыми цепями молекулы ЛПС *Y. pseudotuberculosis*, практически не влияли или слабо влияли на адсорбцию бактериофага. Это хорошо соотносится с данными о том, что в молекуле

липополисахарида чумного микроба полностью отсутствует О-антиген. Обработка клеток поликлональной чумной агглютинирующей сывороткой (ПЧС) приводила к уменьшению количества адсорбировавшихся частиц бактериофага Покровской. Вполне вероятно, что в составе ПЧС содержатся антитела, комплементарные рецепторам этого бактериофага. Возможно также пространственное перекрытие доступа частицам бактериофага к рецепторам, расположенным вблизи эпитопов, распознаваемых антителами, входящими в состав ПЧС. Однако, очевидно, количество конкурирующих с бактериофагом антител в составе ПЧС недостаточно для полной блокировки адсорбции бактериофага Покровской. МКАт6 и МКАт9 не соперничали с бактериофагом сайты адсорбции. Среди моноклональных антител наибольший блокирующий эффект показали МКАт5 и МКАт8. У МКАт7 способность к ингибированию рецепции была не столь выражена. Так как ранее нами было показано, что МКАт5 и МКАт8 взаимодействуют с детерминантами белковой природы, а рецепторы бактериофага Покровской расположены на коровой части ЛПС (Filippov et al., 2011), полученные результаты объясняются, почастичным пространственным экранированием моноклональными антителами доступа бактериофага к близкорасположенным рецепторам карбогидратной природы.

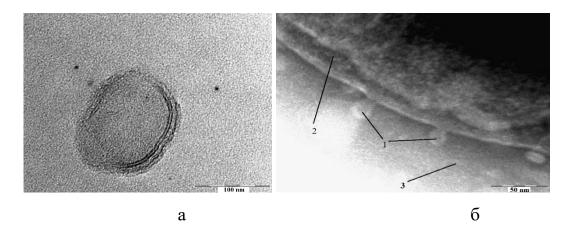
Аналогичный вышеприведенному методический подход был применен в исследованиях с клетками *Y. pseudotuberculosis* и псевдотуберкулёзным диагностическим бактериофагом. Их результаты представлены на рисунке 7.

Клетки, инкубированные с бактериофагом: Y. pstb — без предварительной обработки антителами, МКАт1-МКАт9 - обработанные соответствующими моноклональными антителами, ПЧС - противочумной сывороткой. Контроль — бактериофаг без клеток

Рисунок 7 — Конкуренция МКАт1-9 и псевдотуберкулёзного диагностического бактериофага за сайты связывания на поверхности клеток *Y. pseudotuberculosis*

На рисунке 7 видно, что МКАт1-4, распознающие эпитопы на Обоковых цепях ЛПС Y. pseudotuberculosis, не препятствовали рецепции псевдотуберкулёзного диагностического бактериофага. Как было показано выше (таблица 2), О-боковые цепи не участвуют в адсорбции бактериофага, а их синтез бактерией Y. pseudotuberculosis при пониженных температурах приводит к ослаблению способности фаговых частиц взаимодействовать с микробной клеткой. Обработка клеток поликлональной сывороткой ПЧС позволяла полностью предотвратить адсорбцию псевдотуберкулёзного бактериофага на клетки Y. pseudotuberculosis. Вероятно, в её составе содержатся антитела, комплементарные рецепторам псевдотуберкулёзного диагностического бактериофага, учитывая высокую степень сходства химического состава коровой области ЛПС Y. pestis и Y. pseudotuberculosis (Книрель, Анисимов, 2012). Кроме того, столь мощное ингибирование ПЧС адсорбции бактериофага объясняется и пространственным экранированием сайтов связывания бактериофага антителами к соседним бактериофага эпитопам ЛПС. МКАт9 не влияли на количество связавшихся фаговых частиц. Клетки Y. pseudotuberculosis, обработанные МКАт5, 6, 7 и, в меньшей степени, МКАт8 сорбировали достоверно меньшее количество бактериофага. Ввиду того, что была показана карбогидратная природа рецепторов псевдотуберкулёзного диагностического бактериофага и белковая эпитопов, распознаваемых MKAT5-8, наиболее вероятным объяснением наблюдаемого явления может служить пространственное экранирование рецепторов бактериофага антителами, присоединившимися к соседним комплементарным белковым эпитопам. Следует отметить, что имеются данные литературы, показывающие возможность одновременного участия в рецепции бактериофага компонентов наружной мембраны как белковой, так и полисахаридной природы (Zhao et al., 2013). Однако, выше (рисунок 5) было показано, что обработка клеток Y. pseudotuberculosis протеиназой К не оказывала ингибирующего влияния на способность псевдотуберкулёзного диагностического бактериофага адсорбироваться на бактериальные клетки, что, по-видимому, исключает такую возможность.

Анализируя данные по конкуренции моноклональных антител с использованными в работе иерсиниозными бактериофагами за сайты адсорбции на поверхности бактериальных клеток, можно сделать вывод о том, что МКАт1-4, взаимодействующие с эпитопами О-антигена, практически не препятствуют адсорбции обоих бактериофагов к соответствующим клеткаммишеням. МКАт5-8, выявляющие белковые эпитопы наружной мембраны иерсиний, частично блокируют рецепцию бактериофагов псевдотуберкулёзного диагностического и Покровской, по всей видимости, неспецифически препятствуя доступу частиц бактериофага к рецепторам.


5 Влияние на морфологию клеток и способность к везикулообразованию иерсиний специфических бактериофагов

В ходе проведенных исследований было показано, что после инкубации со специфическими бактериофагами поверхностных и глубинных культур Y. pseudotuberculosis серотипа 1b и Y. pestis штамма EV (а также Y. pseudotuberculosis серотипа 1b – данные здесь не проиллюстрированы) бактериальные клетки уменьшаются в размерах, появляются клетки с «обрубленными» концами, пустотами на полюсах, бугристость поверхности становится более выраженной (рисунок 8a, б). Показано, что бактерии Y. pestis вакцинного штамма EV способны продуцировать внеклеточные везикулы размером 8-120 нм как при поверхностном, так и при глубинном культивировании. Однако доля везикулообразующих клеток оказалась низкой - как правило, значительно меньше 10 %. После инкубации со специфическим бактериофагом выявлено некоторое повышение, по сравнению с контролем, доли клеток, продуцирующих везикулы; одна из таких клеток представлена на Присутствие бактериофага псевдотуберкулёзного 8_B. рисунке в суспензиях поверхностных и глубинных диагностического культур Y. pseudotuberculosis приводило к значительному повышению уровня везикулообразования. Электронно-микроскопическая картина везикул представлена на рисунке 9а, б.

б – ультратонкий срез; а,б – бактерии выращены на плотной, в – в жидкой питательных средах; 1 – везикулы

Рисунок 8 — Просвечивающая электронная микроскопия клеток *Y. pestis* штамма EV, обработанных бактериофагом Покровской

а - сформированная внеклеточная везикула; б – везикулы на стадии отпочкования; 1 – везикулы, 2 – тело клетки *Y. pseudotuberculosis* 1b, 3 – внеклеточный матрикс

Рисунок 9 — Просвечивающая электронная микроскопия везикул *Y. pseudotuberculosis*

ЗАКЛЮЧЕНИЕ

В ходе работы были исследованы иммунохимические особенности механизмов рецепции клетками Y. pestis и Y. pseudotuberculosis специфических бактериофагов. Показано, бактериофаг псевдотуберкулёзный что диагностический не является видоспецифическим и способен лизировать также клетки Y. pestis. Установлено, что бактериофаг псевдотуберкулёзный диагностический относится, как и чумной Покровской, к семейству морфотип C1. исследования Podoviridae. В ходе показано. Y. pseudotuberculosis 1b и Y. pestis EV способны к образованию везикул, присутствие специфических бактериофагов в бактериальной суспензии усиливает везикулообразование, а также вызывает морфо-дегенеративные изменения клеток. Установлено, что моноклональные антитела девяти линий (МКАт1-9) распознают неидентичные эпитопы на поверхности клеток pseudotuberculosis. О-боковые MKAT1-4 тыкивина Y. pseudotuberculosis, а MKAT5-9 – белковые эпитопы наружной мембраны патогенных иерсиний, локализованные не на поринах Отр F или Отр С. Была адсорбции бактериофага отработана методика частиц на убитые формальдегидом бактериальные клетки.

Подтверждены имеющиеся в литературных источниках данные, что рецептор бактериофага Покровской расположен на коре липополисахарида чумного микроба (Filippov *et al.*, 2011). Установлено, что рецептор псевдотуберкулёзного диагностического бактериофага ассоцирован с коровой областью липополисахарида *Y. pseudotuberculosis*. МКАт1-4 не подавляли процесс адсорбции на клетки *Y. pestis* бактериофага Покровской. Поликлональная чумная агглютинирующая сыворотка, содержащая антитела к различным эпитопам поверхностных структур чумного микроба, в том числе и детерминантам кора ЛПС, частично блокировала рецепцию данного

бактериофага. Среди использованных моноклональных антител существенный ингибирующий эффект на процесс адсорбции бактериофага Покровской оказали МКАт5 и МКАт8, в несколько меньшей степени – МКАт7. Очевидно, блокирующее действие этих антител определяется их взаимодействием белковыми наружной мембраны, эпитопами находящимися в непосредственной близости к рецептору фага. Было установлено также, что МКАт1-4 и 9 не препятствуют рецепции псевдотуберуклезного диагностического бактериофага, в то время как поликлональная чумная агглютинирующая сыворотка полностью блокировала бактериофага либо названного за счет взаимодействия непосредственно с рецептором бактериофага, либо за счет пространственного неспецифического экранирования рецепторов антителами близкорасположенным структурам наружной мембраны. Очевидно, по этой же причине регистрировали уменьшение количества частиц прикрепившегося к клеткам Y. pseudotuberculosis бактериофага при использовании МКАт5-8. Представленные результаты работы позволяют глубже понять механизмы рецепции иерсиниозных бактериофагов к поверхности микробной клетки. Полученные знания могут быть востребованы в исследованиях, направленных на разработку средств и методов фаготерапии инфекций, вызываемых патогенными иерсиниями.

выводы

- 1. Иммунохимически охарактеризованы моноклональные антитела, продуцируемые гибридомами 9 линий и выявляющие поверхностные иерсиний. Показано, что распознаваемые эпитопы, антителами MKAT1-4, моноклональными неидентичными являются цепях молекулы расположены на О-боковых липополисахарида Y. pseudotuberculosis; МКАт5-9 выявляют различные белковые эпитопы наружной мембраны Y. pseudotuberculosis, расположенные не на поринах Omp F и Omp C.
- 2. Методом конкурентного ингибирования выявлена способность МКАт5-8 частично блокировать адсорбцию бактериофага псевдотуберкулёзного диагностического, а МКАт5,7 и 8 бактериофага чумного Покровской на клетках *Y. pseudotuberculosis* 1b и *Y. pestis* EV соответственно. МКАт1-4 не оказывали выраженного ингибирующего влияния на адсорбционную способность двух указанных бактериофагов.
- 3. Установлено, что бактериофаг псевдотуберкулёзный диагностический относится к морфотипу С1 семейства *Podoviridae* и способен лизировать бактерии *Y. pestis* EV. Его рецепторы, так же как и рецепторы бактериофага чумного Покровской, ассоциированы с коровой областью липополисахарида бактерий.
- 4. Показана возможность проведения исследований по оценке адсорбционной способности бактериофагов на нежизнеспособных микробных

- клетках. Использование инактивированных формальдегидом бактерий *Y. pseudotuberculosis* позволяет существенно повысить уровень адсорбции бактериофага псевдотуберкулёзного диагностического, характеризующегося низкой скоростью адсорбции, за счет увеличения времени совместной инкубации. Усовершенствованная методика позволяет повысить воспроизводимость анализа и достоверность получаемых результатов, упрощает работу с вирулентными бактериями.
- 5. Впервые показана способность бактерий *Y. pseudotuberculosis* продуцировать внеклеточные везикулы. Инкубация бактериофагов псевдотуберкулёзного диагностического и чумного Покровской соответственно с клетками *Y. pseudotuberculosis* 1b и *Y. pestis* EV приводит к повышению уровня везикулообразования и выраженным морфологическим изменениям бактерий.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в научных журналах, включенных в список ВАК:

- 1. Чернядьев, А.В. Морфологические особенности бактерий *Yersinia pseudotuberculosis*, выращенных при различных температурных условиях / А.В. Чернядьев, А.А. Бывалов, Б.А. Ананченко, Л.Г. Бушмелева (Дудина), С.Г. Литвинец // Известия Коми НЦ УрО РАН. 2012. № 3(11). С. 57-60.
- 2. Бывалов, А.А. Исследование поверхностных антигенных эпитопов *Yersinia pseudotuberculosis* с помощью моноклональных антител / А.А. Бывалов, Л.Г. Дудина, С.Г. Литвинец, О.Д. Новикова, В.А. Хоменко, О.Ю. Портнягина, Ю.С. Оводов // Прикладная биохимия и микробиология. 2014. Т. 50. № 2. С. 203—210.
- 3. Чернядьев, А.В. Электронно-микроскопическое исследование взаимодействия клеток *Yersinia pseudotuberculosis* и *Yersinia pestis* со специфическими бактериофагами / А.В. Чернядьев, Л.Г. Дудина, С.Г. Литвинец, В.П. Черников, А.А. Бывалов // Проблемы особо опасных инфекций. 2014. Вып. 4. С. 80-82.
- 4. Бывалов, А.А. Иммунохимическая активность Б-антигена *Yersinia pseudotuberculosis* / А.А. Бывалов, Л.Г. Дудина, А.В. Чернядьев, И.В. Конышев, С.Г. Литвинец, Ю.С. Оводов // Молекулярная генетика, микробиология и вирусология. -2015. Т. 33. № 2. С. 32-38.
- 5. Бывалов, А.А. Иммунохимическая природа рецепторов бактериофага псевдотуберкулезного диагностического / А.А. Бывалов, Л.Г. Дудина, И.В. Конышев, С.Г. Литвинец, Е.А. Мартинсон // Бюллетень экспериментальной биологии и медицины. 2015. Т. 160. № 11. С. 622-625.
- 6. Бывалов, А.А. Иммунохимическое изучение рецепции бактериофага чумного Покровской / А.А. Бывалов, Л.Г. Дудина,

- С.Г. Литвинец, Е.А. Мартинсон // Журнал микробиологии, эпидемиологии и иммунобиологии. -2016. -№ 4. С. 16-21.
- 7. Бывалов, А.А. Влияние специфического бактериофага на уровень везикулообразования и морфологию клеток *Yersinia pseudotuberculosis* / А.А. Бывалов, М.А. Малкова, А.В. Чернядьев, Л.Г. Дудина, С.Г. Литвинец, Е.А. Мартинсон // Бюллетень экспериментальной биологии и медицины. 2018. Т. 165. № 3. С. 384-388.

Публикации в других журналах и сборниках:

- 8. Чернядьев, А.В. Электронномикроскопическое исследование бактерий *Yersinia pseudotuberculosis*, выращенных при различных температурных условиях / А.В. Чернядьев, Б.А. Ананченко, Е.В. Старкова, Л.Г. Бушмелева (Дудина), А.А. Бывалов // Сб. матер. Всероссийской ежегодной научно-технической конференции «Общество, наука, инновации», Киров. 2012. С. 97-98.
- 9. Бушмелева (Дудина), Л.Г. Изучение антигенности липополисахарида Yersinia pseudotuberculosis методом иммуноблотинга / Л.Г. Бушмелева (Дудина), А.А. Бывалов // Сб. матер. Всероссийской ежегодной научно-технической конференции «Общество, наука, инновации». Секция БТ, Киров. -2013.-C.20-22.
- 10. Бушмелева (Дудина), Л.Г. Изучение биохимической природы эпитопов поверхностных антигенов *Yersinia pseudotuberculosis* с помощью моноклональных антител / Л.Г. Бушмелева (Дудина) // Материалы докладов II Всероссийская (XVII) молодежная научная конференция (с элементами научной школы) «Молодежь и наука на севере», Сыктывкар. 2013. Т.1. С. 166-168.
- 11. Дудина, Л.Г. Оценка антигенных свойств бактерий рода *Yersinia* с помощью моноклональных антител / Л.Г. Дудина, И.В. Конышев // Материалы XIII Всероссийская молодежная научная конференция Института физиологии Коми научного центра Уральского отделения РАН «Физиология человека и животных: От эксперимента к клинической практике», Сыктывкар. 2014. С. 43-46.
- 12. Конышев, И.В. Влияние температуры культивирования клеток *Yersinia pseudotuberculosis* на их адгезивные и инвазивные свойства / И.В. Конышев, Л.Г. Дудина // Материалы XIII Всероссийская молодежная научная конференция Института физиологии Коми научного центра Уральского отделения РАН «Физиология человека и животных: От эксперимента к клинической практике», Сыктывкар. 2014. С. 65-66.
- 13. Дудина, Л.Г. Характеристика моноклональных антител к поверхностным антигенам *Yersinia pseudotuberculosis* / Л.Г. Дудина, А.А. Бывалов // Материалы II Всероссийской конференции «Фундаментальная гликобиология», Саратов. 2014. С. 28.
- 14. Дудина, Л.Г. Исследование влияния периодатного окисления на антигенные детерминанты *Yersinia pseudotuberculosis* / Л.Г. Дудина,

- Ю.Д. Еременко, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК-2014) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ГФ, ФЭМ, ФАВТ, ФАМ, ФПМТ, ФСА, ХФ, ЭТФ. Вятский государственный университет, Киров. 2014. С. 92-94.
- 15. Malkova, M.A. Dynamics of interaction of bacteria *Yersinia pseudotuberculosis* with specific bacteriophage / M.A. Malkova, L.G. Dudina, A.A. Byvalov // Materials of the XII international research and practice conference «European Science and Technology», Munich, Germany. 2015. P. 296-299.
- 16. Дудина, Л.Г. Определение биохимической природы рецепторов бактериофага покровской / Л.Г. Дудина, И.В. Конышев, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК 2015) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ХФ, ФСА, ФАМ, ЭТФ, ФАВТ, ФПМТ, ФЭМ, ФГСН, ЮФ. ФГБОУ ВПО «Вятский государственный университет», Киров. 2015. С. 125-126.
- 17. Дудина, Л.Г. Конкуренция псевдотуберкулезного диагностического бактериофага и специфических антител за рецепторы на поверхности *Yersinia pseudotuberculosis* / Л.Г Дудина., М.А. Малкова, Ю.Д. Еременко, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК 2015) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ХФ, ФСА, ФАМ, ЭТФ, ФАВТ, ФПМТ, ФЭМ, ФГСН, ЮФ. ФГБОУ ВПО «Вятский государственный университет», Киров. 2015. С. 122-124.
- 18. Конышев, И.В. Изучение адгезивности иерсиний к эукариоцитам методом оптической ловушки / И.В. Конышев, Л.Г. Дудина, Т.В. Ускова, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК 2015) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ХФ, ФСА, ФАМ, ЭТФ, ФАВТ, ФПМТ, ФЭМ, ФГСН, ЮФ. ФГБОУ ВПО «Вятский государственный университет», Киров. 2015. С. 119-121.
- 19. Малкова, М.А. Динамика взаимодействия бактерий *Yersinia pseudotuberculosis* со специфическим бактериофагом / М.А. Малкова, Л.Г. Дудина, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК 2016) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ХФ, ФСА, ФАМ, ЭТФ, ФАВТ, ФПМТ, ФЭМ, ФГСН, ЮФ. ФГБОУ ВО «Вятский государственный университет», Киров. 2015. С. 139-143.
- 20. Дудина, Л.Г. Разработка методики определения адсорбционной активности иерсиниозных бактериофагов с использованием инактивированных бактерий / Л.Г. Дудина, М.А. Малкова, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК 2017) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ХФ, ФСА, ФАМ, ЭТФ, ФАВТ, ФПМТ, ФЭМ, ФГСН, ЮФ. ФГБОУ ВО «Вятский государственный университет», Киров. 2017. С. 54-59.

- 21. Дудина, Л.Г. Липополисахариды Yersinia pseudotuberculosis и Yersinia pestis (обзор литературы) / Л.Г. Дудина, Д.А. Девришов, А.А. Бывалов // Сборник: Общество, наука, инновации (НПК 2018) Всероссийская ежегодная научно-практическая конференция: Общеуниверситетская секция, БФ, ХФ, ФСА, ФАМ, ЭТФ, ФАВТ, ФПМТ, ФЭМ, ФГСН, ЮФ. ФГБОУ ВО «Вятский государственный университет», Киров. 2018. Т. 1. С. 42-51.
- 22. Дудина, Л.Г. Иммунохимическая характеристика рецепторов иерсиниозных бактериофагов / Л.Г. Дудина, А.А. Бывалов // Сборник материалов IV Всероссийской конференции «Фундаментальная гликобиология», Киров. 2018. С. 96-97.

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность научному руководителю доктору медицинских наук Бывалову Андрею Анатольевичу за помощь и поддержку в ходе проведения исследований; коллективу лаборатории молекулярных основ антибактериального иммунитета Тихоокеанского института биоорганической химии им. Г.Б. Елякова ДВО РАН за препараты поринов и поликлональных антител, которые они предоставили; коллективу кафедры биотехнологии ВятГУ за поддержку во время выполнения диссертационной работы.

ДУДИНА ЛЮБОВЬ ГЕННАДЬЕВНА

ИММУНОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА РЕЦЕПЦИИ БАКТЕРИЯМИ YERSINIA PSEUDOTUBERCULOSIS И YERSINIA PESTIS СПЕЦИФИЧЕСКИХ БАКТЕРИОФАГОВ

03.02.03 Микробиология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

Подписано в печать __.__.2019. Формат 60×90/16. Усл. печ. л. 1,69. Тираж 100 экз. Заказ № Набор компьютерный

Отпечатано в Федеральном государственном бюджетном образовательном учреждении высшего образования «Вятский государственный университет» 610000, г. Киров, ул. Московская, 36